A Two-Phase Approach for Semi-Supervised Feature Selection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forward Semi-supervised Feature Selection

Traditionally, feature selection methods work directly on labeled examples. However, the availability of labeled examples cannot be taken for granted for many real world applications, such as medical diagnosis, forensic science, fraud detection, etc, where labeled examples are hard to find. This practical problem calls the need for “semi-supervised feature selection” to choose the optimal set o...

متن کامل

Hypergraph Spectra for Semi-supervised Feature Selection

In many data analysis tasks, one is often confronted with the problem of selecting features from very high dimensional data. Most existing feature selection methods focus on ranking individual features based on a utility criterion, and select the optimal feature set in a greedy manner. However, the feature combinations found in this way do not give optimal classification performance, since they...

متن کامل

Efficient semi-supervised feature selection by an ensemble approach

Constrained Laplacian Score (CLS) is a recently proposed method for semi-supervised feature selection. It presented an outperforming performance comparing to other methods in the state of the art. This is because CLS exploits both unsupervised and supervised parts of data for selecting the most relevant features. However, the choice of the little supervision information (represented by pairwise...

متن کامل

Semi-Supervised Feature Selection with Constraint Sets

In machine learning classification and recognition are crucial tasks. Any object is recognized with the help of features associated with it. Among many features only some leads to classify object correctly. Feature selection is useful technique to detect such specific features. Feature selection is a process of selecting subset of features to reduce number of features (dimensionality reduction)...

متن کامل

Semi-Supervised Fuzzy-Rough Feature Selection

With the continued and relentless growth in dataset sizes in recent times, feature or attribute selection has become a necessary step in tackling the resultant intractability. Indeed, as the number of dimensions increases, the number of corresponding data instances required in order to generate accurate models increases exponentially. Fuzzy-rough set-based feature selection techniques offer gre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithms

سال: 2020

ISSN: 1999-4893

DOI: 10.3390/a13090215